3rd task: Two-way slab supported by columns (flat slab)

Reinforcement of the slab

- Design of bending reinforcement
- Drawing of bending reinforcement
- Detailed check of punching
- Design of punching reinforcement (if necessary)
- Sketch of punching reinforcement

Design of bending reinforcement

- Generally, it is the same as for beams
- Do the calculation for the moments calculated in 7th seminar
- Do the calculation in a table like this:

Design and check of bending reinforcement of the slab																
	Cross-section	Strip	Design							Check						
Panel			m _{Ed}	d	z	a _{s,rqd}	a _{s,min}	Design	a _{s,prov}	x	ξ	z	m _{Rd}	$m_{Rd} > m_{Ed}$	ξ<0,45	spacing
			[kNm/m]	mm	mm	[mm ²]	[mm ²]		[mm ²]	[mm]		[mm]	[kNm/m]			of bars
	1 (left support)	no division	31,02	169	152	469	220	Ø12 á 250 mm	452	18,42	0,109	162	31,76	OK	OK	OK
C _o	2 (midspan)	Column	34,46	169	152	521	220	Ø12 á 200 mm	566	23,07	0,137	160	39,32	OK	OK	OK
		Middle	22,97	169	152	347	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK
	3 (right support)	Column	60,31	169	152	912	220	Ø12 á 100 mm	1131	46,10	0,273	151	74,04	OK	OK	OK
		Middle	20,10	169	152	304	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK
	1 (left support)	Column	70,08	169	152	1060	220	Ø12 á 100 mm	1131	46,10	0,273	151	74,04	OK	OK	OK
C _{in}		Middle	23,36	169	152	353	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK
	2 (midspan)	Column	30,19	169	152	456	220	Ø12 á 250 mm	452	18,42	0,109	162	31,76	OK	OK	OK
		Middle	20,12	169	152	304	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK
	3 (right support)	Column	70,08	169	152	1060	220	Ø12 á 100 mm	1131	46,10	0,273	151	74,04	OK	OK	OK
		Middle	23,36	169	152	353	220	Ø8 á 150 mm	335	13,65	0,081	164	23,82	OK	OK	OK
3.	1 (left support)	Column	36,14	156	140	592	204	Ø12 á 200 mm	566	23,07	0,147	147	36,36	OK	OK	OK
		Middle	12,65	156	140	207	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK
	2 (midspan)	Column	29,78	156	140	488	204	Ø12 á 200 mm	566	23,07	0,147	147	36,36	OK	OK	OK
		Middle	10,69	156	140	175	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK
	3 (right support)	Column	50,12	156	140	821	204	Ø12 á 100 mm	1131	46,10	0,294	138	68,14	OK	OK	OK
		Middle	9,00	156	140	147	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK
3 _{in}	1 (left support)	Column	56,62	156	140	927	204	Ø12 á 100 mm	1131	46,10	0,294	138	68,14	OK	OK	OK
		Middle	13,35	156	140	219	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK
	2 (midspan)	Column	24,39	156	140	400	204	Ø12 á 250 mm	452	18,42	0,117	149	29,41	OK	OK	OK
		Middle	11,50	156	140	188	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK
	3 (right support)	Column	56,62	156	140	927	204	Ø12 á 100 mm	1131	46,10	0,294	138	68,14	OK	OK	OK
		Middle	13,35	156	140	219	204	Ø8 á 200 mm	251	10,23	0,065	152	16,69	OK	OK	OK

- Two-way slab = two values of *d* !!!
- Use higher d in the direction of higher $m_{\rm Ed}$
- Use 8 14 mm bars
- Use cover depth from the 1st task

Check of the design

Detailing rules

• Relative height of compressed zone:

$$\xi = \frac{x}{d} \le 0.45$$

• Spacing of rebars:

$$s \le \min(2h_{\rm s}; 250 \text{ mm})$$

- Recommendation: Spacing not less than 100 mm
- RULE: It is always better to use higher number of smaller bars than lower number of bigger bars (deflections, stress distribution...)

Drawing of bending reinforcement

- 1 drawing for upper reinforcement
- 1 drawing for lower reinforcement
- Calculation of anchorage length see 5th seminar

Drawing of bending reinforcement

Layout of bending reinforcement

Detailed check of punching

- 3 steps
- Is the resistance of compressed concrete in the face of the column sufficient? Already checked in preliminary design.

 $v_{\rm Ed,max} \leq v_{\rm Rd,max}$

• Is the slab able to carry the load without reinforcement?

 $v_{\rm Ed,1} \leq v_{\rm Rd,c}$

• Is the designed reinforcement sufficient?

 $v_{\rm Ed,1} \leq v_{\rm Rd,cs}$

Resistance without reinforcement

$$v_{\text{Ed},1} = \frac{\beta V_{\text{Ed}}}{u_1 d} \le v_{\text{Rd,c}} = \max \begin{bmatrix} C_{\text{Rd,c}} \cdot k \cdot \sqrt[3]{(100\rho_l \cdot f_{\text{ck}})}; & 0,035\sqrt{k^3 f_{\text{ck}}} \end{bmatrix}$$
Stress in control perimeter u_1 - see resistance of a slab preliminary design $\frac{\text{Without}}{\text{without}} \text{ punching}}{\text{reinforcement}}$
Reinforcement ratio for tensile reinforcement $\rho_l = \sqrt{\rho_{lC} \cdot \rho_{l3}} \le 0,02$

$$d = \frac{d_c + d_3}{2}$$
 $\rho_{lC} = \frac{a_{sC}}{1000d_c}, \rho_{l3} = \frac{a_{s3}}{1000d_3}$

If you used caps (steel flanged collars), use u₁ calculated with the cap

 a_{sC} and a_{s3} are cross-sectional areas of upper reinforcement per 1 m in belt C and belt 3 (in the distance of 3*d* from perimeter u_0)

Remaining coefficients – see preliminary design (7th seminar)

 $v_{\text{Ed},1} \le v_{\text{Rd},c} \odot$ No punching reinforcement needed $v_{\text{Ed},1} > v_{\text{Rd},c} \odot$ Design of punching reinforcement

Design of punching reinforcement

• Control perimeter where the reinforcement is not necessary ($v_{Ed,out} = v_{Rd,c}$) and its radius:

Layout of punching reinforcement

- First stud (0.3–0.5)*d* behind the face of column
- Last stud not more than 1.5*d* from u_{out}
- Spacing of intermediate studs $s_r \le 0.75d$
- Spacing of rails $s_t \le 2d$
- Spacing of rails in perimeter u_1 less than 1.5d
- See example on my webpage

Design of punching reinforcement

• Number of rails ("sun rays")

$$n \ge \max\left(\frac{2\pi(r_{\text{out}}-1,5d)}{2d};\frac{u_1}{1,5d}\right)$$

- Diameter of studs: 10 14 mm (up to 25 mm if necessary) => cross-sectional area of one stud A_{sw,1}
- Cross-sectional area of studs in one perimeter:

$$A_{sw} = n.A_{sw,1}$$

If you used caps (steel flanged collars), use u₁ calculated with the cap

Check of punching reinforcement

$$v_{\text{Ed},1} = \frac{\beta V_{\text{Ed}}}{u_1 d} \leq v_{\text{Rd,cs}}$$
Stress in control Punching shear resistance of a slab
perimeter u₁ Punching reinforcement
$$v_{\text{Rd,cs}} = 0,75v_{\text{Rd,c}} + 1,5\frac{d}{s_r}A_{\text{sw}}f_{\text{ywd,ef}}\frac{1}{u_1 d}\sin\alpha \leq k_{\max}v_{\text{Rd,c}}$$
Punching shear
resistance of a slab
with punching of Effective design strength of Angle between
studs and slab, 90°

$$f_{\text{ywd,ef}} = 250 + 0,25d \leq f_{\text{ywd}}$$
Design strength of reinforcement
steel, ask the producer of studs or
take 435 MPa

$$v_{\text{Ed},1} \geq v_{\text{Rd,cs}} \textcircled{O}$$
 Redesign: Decrease s_r or increase A_{sw,1}

Punching reinforcement ratio

 $\rho_{sw} \ge \rho_{sw,min} \odot$ Checked $\rho_{sw} < \rho_{sw,min} \otimes$ Redesign: Decrease s_r or increase A_{sw,1}

Sketch of punching reinforcement

- Plan and section in scale 1:20
- See example on my website

