
3rd task: Two-way slab supported by columns (flat slab)

Our goal in 3rd task will be to:

- Design dimensions of all elements
- Perform detailed calculation of bending moments using "direct design method"
- Design bending reinforcement of the slab
- Design punching reinforcement of the slab Next week

This week

• Draw layout of reinforcement

Design of dimensions – steps

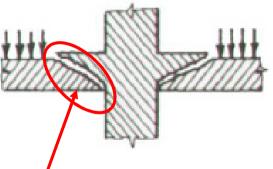
- Depth of the slab see following slides
- Column dimensions see presentation from the 1st seminar, no differences
- Dimensions of wall and edge beam see the assignment of your task
- Preliminary check of punching
- Sketch of the structure redraw the plan from the assignment with your dimensions (given+designed ones) – as in the 1st task

Depth of the slab h_s

- Empirical estimation: $h_{S} = \frac{1}{33} l_{n, \max}$ • Effective depth d: $d = h_{s} - c - \frac{\emptyset}{2}$ • Span/depth ratio (deflection control): The longest clear span $h_{S} = \frac{1}{33} l_{n, \max}$ $d = h_{s} - c - \frac{\emptyset}{2}$ The longest clear span Diameter of steel bars, estimate 10 mm Cover depth, take the value from 1st task
 - $\lambda = \frac{1}{d} \leq \lambda_{\text{lim}} = \kappa_{c1} \kappa_{c2} \kappa_{c3} \lambda_{d,\text{tab}}$ Effect of shape Effect of span Effect of reinforcement 1.0 1.2

Depth of the slab $h_{\rm S}$

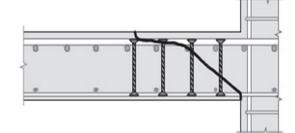
 $\lambda_{d,tab}$ for flat slabs


	Concrete class								
ρ%	12/15	16/20	20/25	25/30	30/37	40/50	50/60		
0,5	17,5	19,0	20,4	22,2	24,6	30,9	38,4		
1,5	14,6	15,1	15,6	16,2	16,8	18,0	19,2		

- If span/depth ratio is not checked, increase the empirical $\rm h_{\rm S}$
- <u>Do not design</u> $h_s < 200 \text{ mm} you can't use punching reinforcement for very thin slabs$
- In the end, calculate the total load of the slab *f*_d (in a table). Self-weight is given by h_s, other loads are the same as in 1st task.

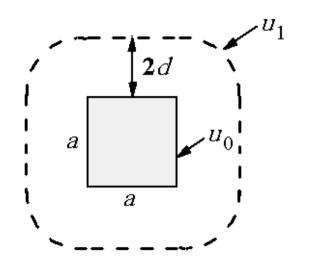
What is punching?

- A mode of shear failure of flat slabs
- No beams => load from large area of a slab is transferred directly to a column through small area of a joint => concentrated stresses =>


possible failure

Concentration of loads => failure

Reinforcement: Double-headed studs



Piper's Row Car Park, Wolverhampton, UK, 1997 (built in 1965).

Preliminary check of punching

- Before designing the reinforcement, we have to check if the structure is "suitable" for the design of punching shear reinforcement
- "Non-suitable" structure will always fail, no matter how much reinforcement is provided !!!
- Control perimeters:

$$u_0 = 4a$$
$$u_1 = 4a + 2\pi \cdot 2d$$
Effective depth of your slab

Maximum punching shear resistance

• Is the resistance of compressed concrete sufficient?

Ed

 $u_0 d$

- Check in perimeter u₀
- Stress => values are in MPa

 $V_{\rm Ed,0}$

Maximum punching shear resistance

 $= 0.4 \nu f_{\rm cd}$

Stress in _____ perimeter u₀

> Coefficient expressing effect of shear on compressive strength

Coefficient expressing effect of additional stresses

 $v = 0, 6 \left(1 - \frac{f_{\rm ck}}{250} \right)$

Coefficient expressing position of the column, for

Shear force, equal to normal force in the column from ONE floor (do not sum the forces from all floors!!!)

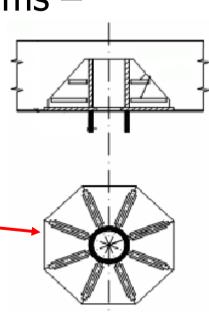
inner columns $\beta = 1.15$

Max. resistance with reinforcement

- Is it possible to anchor the punching reinforcement in concrete sufficiently?
- Check in perimeter u₁

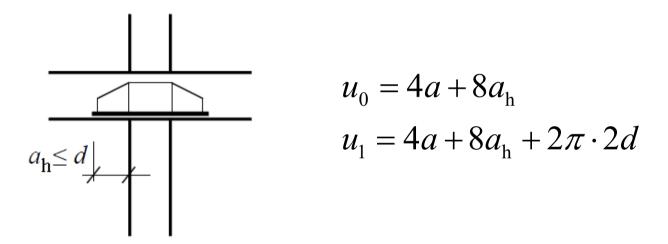
 $v_{\text{Ed},1} = \frac{\beta V_{\text{Ed}}}{u_1 d} \le k_{\text{max}} \cdot v_{\text{Rd,c}} = k_{\text{max}} \cdot C_{\text{Rd,c}} \cdot k \cdot \sqrt[3]{(100\rho_l \cdot f_{\text{ck}})}$

Coefficient of maximum Reduction
resistance, see tableEffect of depth
factor, 0.12Reinforcement ratio of
tensile reinforcement,
estimation 0.005


S T	effective depth of the slab	k _{max}			
I R	<i>d</i> ≤ 200 mm	1,45			
R U	200 mm ≤ <i>d</i> ≤ 700 mm	interpolation			
P S	<i>d</i> ≥ 700 mm	1,70			
Double-he	aded studs connected to a spacer bar		1,80		

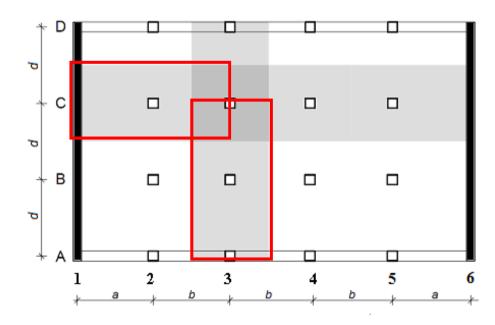
Preliminary check of punching

- If any of the conditions is not met, it is not possible to design shear reinforcement
 - 1st not met the structure will fail due to crushing of concrete, no matter how much reinforcement you provide
 - 2nd not met the reinforcement will not be anchored in concrete sufficiently => it will be useless
- => You have to **redesign the structure**

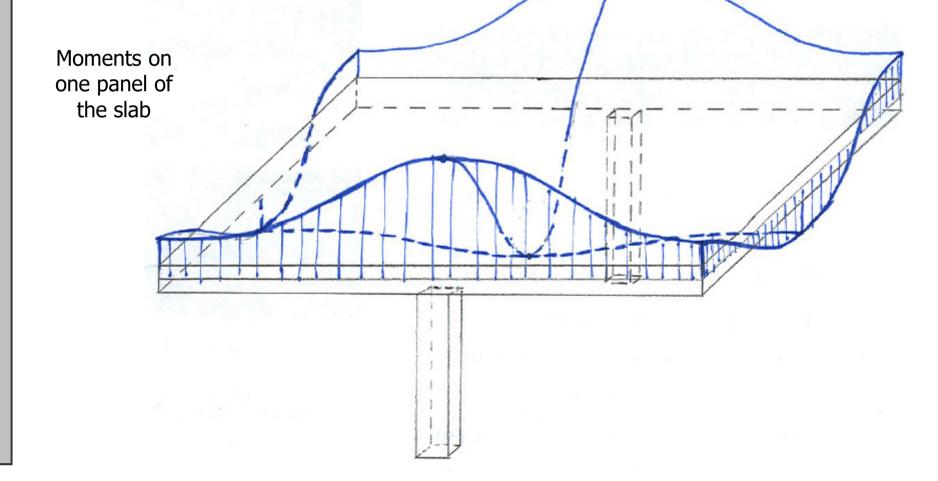

Redesigning – possibilities

- Increase depth of the slab not effective, load is increased at the same time
- Increase dimension of the column effective, but floor area is decreased
- Increase concrete strength expensive
- Design a slab with drops or flat beams complicated
- Design columns with caps use steel flanged collars (welded steel details that are put into the slab-column joint)

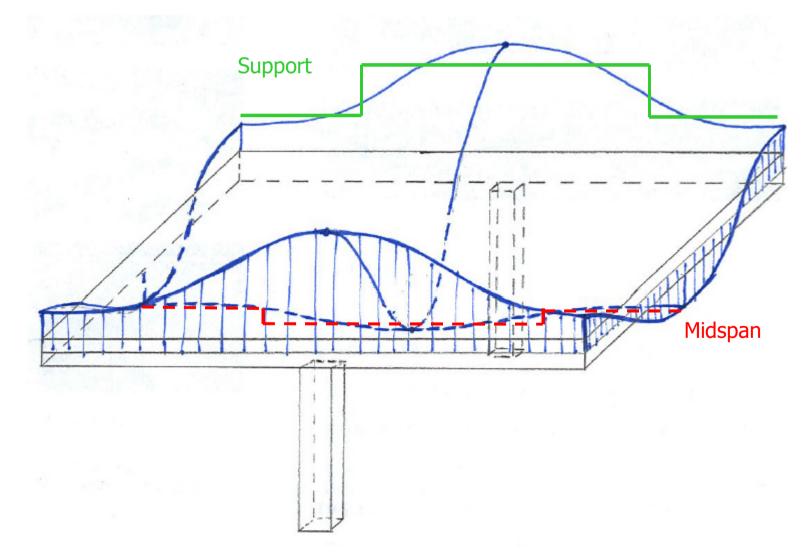
Redesigning


- The collar increases u₀ and u₁ => stresses in the control perimeters are decreased
- Resistances are not changed

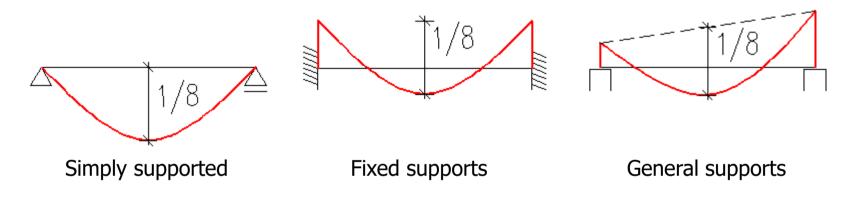
⇒ Recalculate the two conditions with new values ⇒ If it does not help, either increase h_s or dimension of the column and recalculate the conditions


Calculation of bending moments

- Use direct design method (DDM)
- Analyze one belt in longitudinal direction, one belt in transverse direction (grey belts in the assignment)
- For each belt, analyze the outer panel and the adjacent inner panel

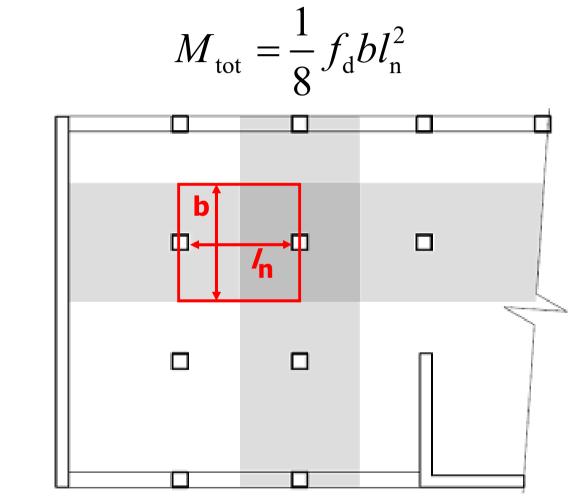

DDM - background

Real distribution of bending moments: 2D curve From practical point of view, it is impossible to provide reinforcement exactly for these moments


DDM - background

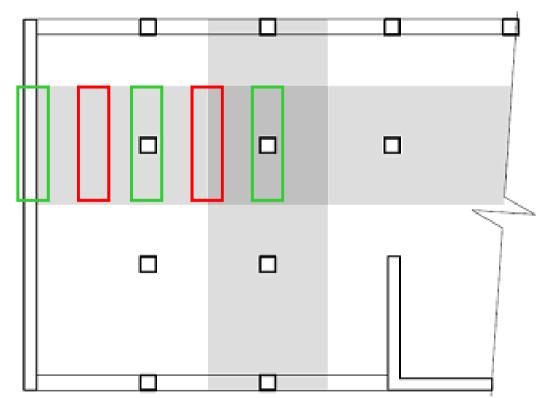
=> We need to calculate "representative moments" for particlar areas of the slab

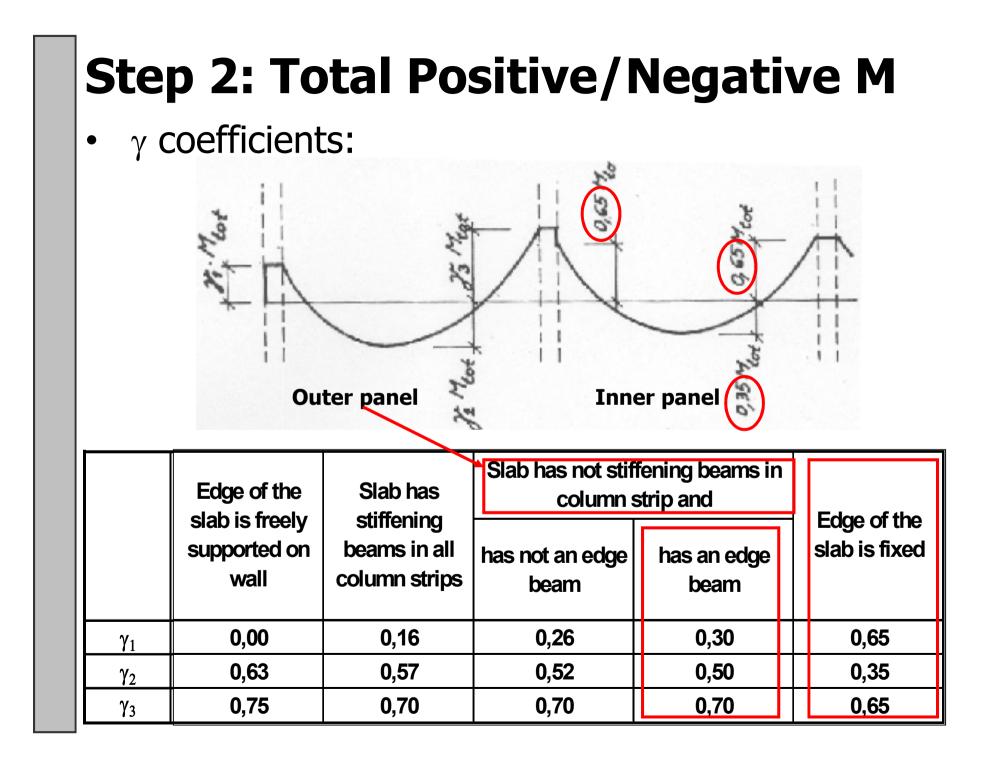
DDM - background


• For all types of panels, the total moment is: 1/8*load*width*span²

- For **regular** slabs, we are able to divide the total moment into particular moments using precalculated coefficients
- More theoretical details, conditions for use of precalculated coefficients lectures

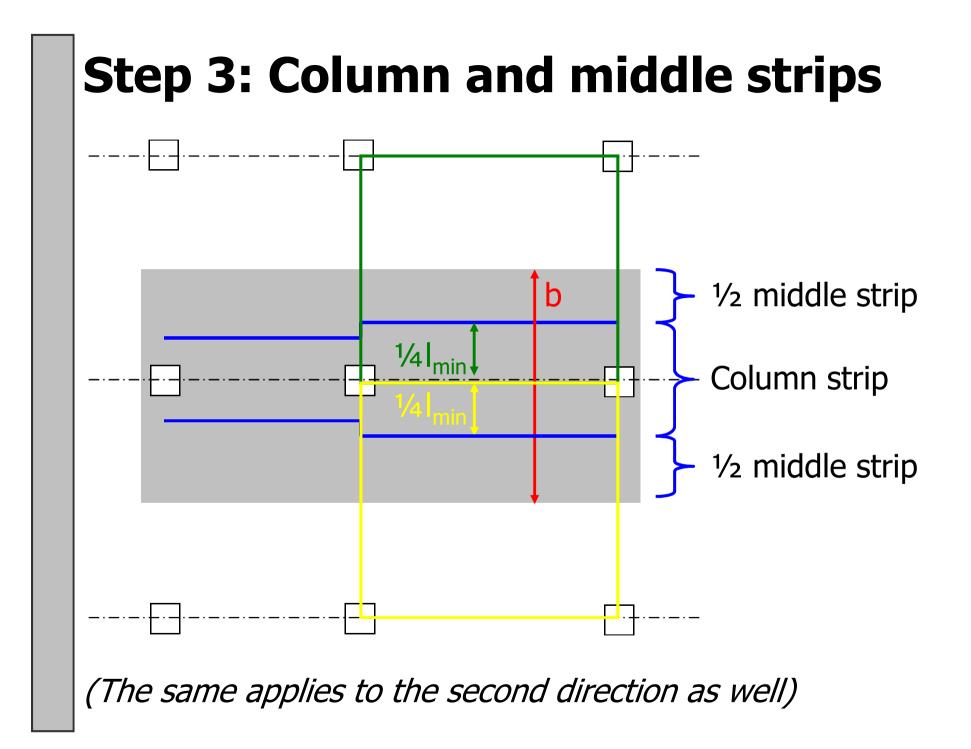
Step 1: Total moment


• The total moment of a panel is:


(The same applies to other panels as well)

Step 2: Total Positive/Negative M

 Using γ coefficients, we divide total moment into total positive (midspan)/negative (support) moments in each panel



(The same applies to the second direction as well)

Step 3: Column and middle strips

- We have to divide the belts into column strips (more loaded) and middle strips (less loaded)
- The width of the column strip is 1/4 of shorter span of adjacent panel to each side from the axis
- The width of the middle strip is the rest of the width of the belt
- The width of column strip does not have to be the same in all the panels!!!

Step 4: Moments in col./mid. strips

- Using ω coefficients, we divide total positive/negative moments into moments in column/middle strips
- The moment in **column** strip is:
 - ω * (total positive or negative moment)
- The moment in middle strip is:
 (1-ω) * (total positive or negative moment)

Step 4: Moments in col./mid. strips

• ω coefficients:

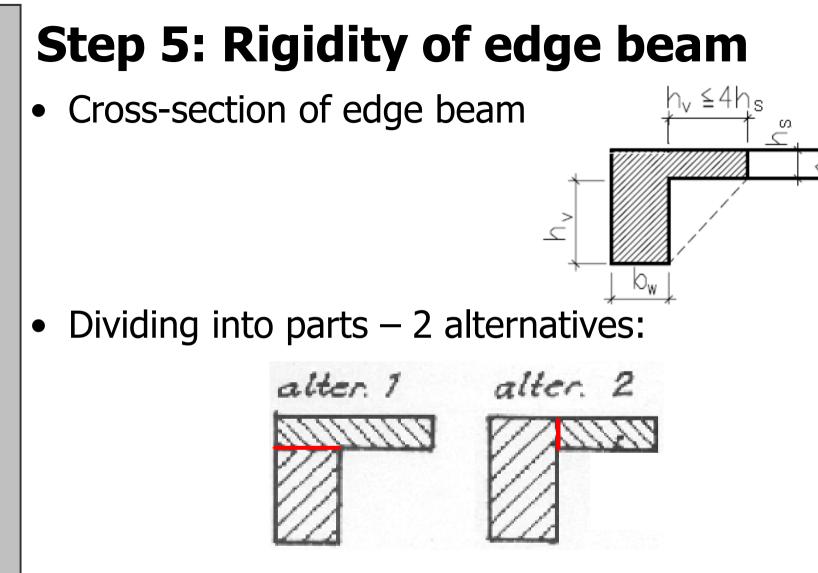
Moment		a 1 / 1		ω for /2/ /1				
		$\alpha_1 r_2$	0,5	1,00	2,00			
Outer sup- port	α	$l_2 / l_1 = 0$	$\beta_t = 0$	1,00	1,00	1,00		
			β,≥2,5	0,75	0,75	0,75		
	α	$l_2 / l_1 \ge 1,0$	$\beta_{t} = 0$	1,00	1,00	1,00		
			$\beta_t \ge 2,5$	0,90	0,75	0,45		
sup-	α	$l_2 / l_1 = 0$		0,75	0,75	0,75		
	α	$l_2 / l_1 \ge 1,0$		0,90	0,75	0,45		
	α	$l_2 / l_1 = 0$		0,60	0,60	0,60		
	α	$l_2 / l_1 \ge 1,0$		0,90	0,75	0,45		
_	V							
				β – refers to rigidity				
effect of longitudinal stiffening, we 't have any stiffening					of edge beam			
	Outer sup- port	Outer α Sup- α port α Inner α sup- α port α α α	Outer sup- port $\alpha_{1} l_{2} / l_{1} = 0$ $\alpha_{1} l_{2} / l_{1} \ge 1,0$ Inner sup- port $\alpha_{1} l_{2} / l_{1} \ge 1,0$ ongitudinal stiffening, we	Outer sup- port $\alpha_{1} l_{2} / l_{1} = 0$ $\beta_{t} = 0$ $\beta_{t} \ge 2,5$ $\alpha_{1} l_{2} / l_{1} \ge 1,0$ $\beta_{t} = 0$ $\beta_{t} \ge 2,5$ Inner sup- port $\alpha_{1} l_{2} / l_{1} \ge 1,0$ $\alpha_{1} l_{2} / l_{1} \ge 1,0$ $\alpha_{1} l_{2} / l_{1} \ge 1,0$ ongitudinal stiffening, we	n e n t $\alpha_1 l_2 / l_1$ 0,5 Outer support $\alpha_1 l_2 / l_1 = 0$ $\beta_t = 0$ 1,00 $\beta_t \ge 2,5$ 0,75 $\alpha_1 l_2 / l_1 \ge 1,0$ $\beta_t = 0$ 1,00 Dotter support $\alpha_1 l_2 / l_1 \ge 1,0$ $\beta_t \ge 2,5$ 0,75 Inner support $\alpha_1 l_2 / l_1 \ge 1,0$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ Inner support $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,90$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ Ongitudinal stiffening, we 0 0 0 0	nent $\alpha_1 l_2 / l_1$ $0,5$ $1,00$ Outer support $\alpha_1 l_2 / l_1 = 0$ $\beta_t = 0$ $1,00$ $1,00$ Outer support $\alpha_1 l_2 / l_1 \ge 1,0$ $\beta_t = 0$ $1,00$ $1,00$ Inner support $\alpha_1 l_2 / l_1 \ge 1,0$ $\beta_t = 0$ $0,75$ $0,75$ Inner support $\alpha_1 l_2 / l_1 = 0$ $0,75$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$ $0,90$ $0,75$ $0,75$ $\alpha_1 l_2 / l_1 \ge 1,0$		

Step 4: Moments in col./mid. strips

- ω coefficients in our case:
 - For all positive moments (midspans), $\omega = 0.6$
 - For all negative moments above columns, $\omega = 0,75$
 - For negative moment above the wall, ω = 1,00
 - For negative moment in the edge beam, see next page lin が田

Step 5: Rigidity of edge beam

• Rigidity coefficient of edge beam is:


• I_s is moment of inertia of the slab in belt 3:

• I_t is torsion moment of inertia of edge beam:

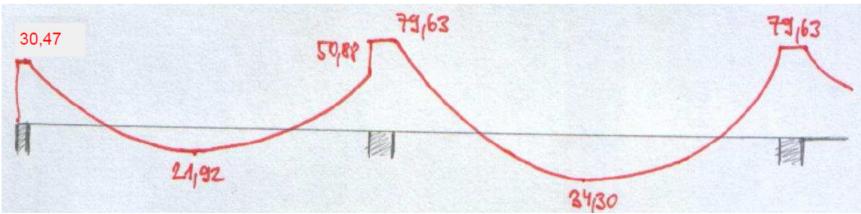
 $I_{\rm s} = \frac{1}{12}bh_{\rm s}^3$

Depth of the slab

 $I_{t} = \sum_{i=1}^{n} \left(1-0, 63 \frac{t_{i}}{a_{i}}\right) \cdot \frac{t_{i}^{3}a_{i}}{3}$ You have to sum torsion moments of all parts of the cross-section Longer side of a part of the cross-section Shorter side of a part of the cross-section

- Calculate I_t for both alternatives and use the higher value to calculate β_t

Step 5: Rigidity of edge beam


- Interpolate ω according to the value of β_t
 - $\beta_t = 0 =>$ edge beam has no influence, the edge behaves as free edge without beam
 - $β_t ≥ 2,5 =>$ edge beam is so rigid that the edge behaves as a fixed edge
 - 0 < β_t < 2,5 => something between the two boundary cases
- Divide total negative moment on the edge with edge beam into moments in column and middle strip

Step 6: Moments per 1 meter

- Divide the calculated moments in column/middle strips by the width of column/middle strip to receive moments per 1 meter of the slab
- Up to this step, all the moments were in kNm
- These moments are in kNm/m !
- For the wall, we don't distinguish between column/middle strip – total negative moment is divided by total width of the belt

Step 7: Moment curves

- Draw moment curves for calculated moments per 1 meter
- There will be 4 curves
 - Belt C column strip
 - Belt C middle strip
 - Belt 3 column strip
 - Belt 3 middle strip

Conclusions

- Steps 1,2,3,5,7 will be done manually
- Steps 4,6 will be calculated in a table

Moments in column and middle strips									
Panel	Cross-section	Positive/negative moment M _i [kNm]	Strip	ω	Moment in column/middle strip M _j [kNm]	Width of the strip s _j [m]	Moment per 1 m of the slab m _j [kNm/m]		
	1 (left support)	179,76	no division	1,00	179,76	5,90	30,47		
C₀	2 (midspan)	96,80	Column Middle	0,60	58,08 38,72	2,65 3,25			
	3 (right support)	179,76	Column Middle	0,75	134,82 44,94	2,65 3,25			
	1 (left support)	313,20	Column Middle	0,75	234,90 78,30	,			
C _{in}	2 (midspan)	168,66	Column Middle	0,60	101,20 67,46	2,95	34,30		
	3 (right support)	313,20	Column Middle	0,75	234,90 78,30		79,63		
	1 (left support)	119,11	Column Middle	0,99	117,44 1,67	2,95 4,05			
3 ₀	2 (midspan)	198,50	Column Middle	0,60	119,10 79,40	2,95	40,37		
	3 (right support)	277,92	Column Middle	0,75	208,44 69,48	2,95	70,66		
	1 (left support)	258,07	Column Middle	0,75	193,55 64,52				
3 _{in}	2 (midspan)	138,96	Column	0,60	83,38 55,58	2,95	28,26		
	3 (right support)	258,07	Column Middle	0,75	193,55 64,52				

• See an example on my webpage!