
1st task:
Frame structure



Design of reinforcement

• Design the reinforcement of the middle 
column in the 1st floor

• Geometric imperfections of column

• Slenderness of the column

• Reinforcement of the column



• We calculated moments on ideal model of 
frame structure, but real structures are not 
perfect

• Geometric imperfections cause additional 
bending moments

Geometric imperfections
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• Geometric imperfection

• Additional moment due to geom. imperfection

Geometric imperfections
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• Calculate bending moments with the influence 
of geometric imperfections MEd,I in the head 
and foot of the column for both combinations

• Use table to calculate the values

• We will use these values to check the load-
bearing capacity (in the interaction diagram)

Geometric imperfections



• Slenderness of the column

• Limiting slenderness

Slenderness of the column
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• Effect of bending moments

• Calculate lim for all combinations and use the 
worst case (lowest lim)

Slenderness of the column
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• BUT: If the bending moments are caused
predominantly by the imperfections, we should
always take C = 0.7

• This is the case of our COMB1 (there are NO 
moments from internal forces, just the moments
caused by imperfections) => Take C = 0.7

• If  ≤ lim, the column is robust
• If  > lim, the column is slender

Slenderness of the column



• 1st method: Estimation with the presumption of 
uniformly distributed compression over the 
whole cross-section

• If the equation gives As,req,1 < 0, minimum 

reinforcement 4ø 12 mm should be designed

Design of reinforcement
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• 2nd method: Chart for design of symmetrical
reinforcement

• Try both combinations and use higher value of
As,req

Design of reinforcement
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Design of reinforcement



• Final design:

• Check detailing rules

Design of reinforcement
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Check of column – interaction diagram



Check of column – interaction diagram

• Calculate main points of interaction diagram

• Connect them by lines (simplification)

• Calculate minimum bending moment M0

• Restrict axial resistance

• If your column is slender, increase bending 
moments by approximately 30 % 
(simplification)

• If COMB1 and COMB2 lay inside the curve, 
column is checked

• If not, we will adjust the design (DO NOT 
recalculate the ID)

• See the example on my website



• Maximum normal force resistance (pure 
compression)

• In our case, for all points As1 = As2 and zs1 = zs2 

because we have symmetrical reinforcement
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See design of reinforcement
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• To calculate 
normal force 
capacity – sum the 
internal forces
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bending moment 
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moments of these 
forces



• Whole cross-section is compressed (strain in 
tensile reinforcement is 0)

ID – point 1
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• Maximum bending moment resistance (stress in 
tensile reinforcement s1 = fyd; that means x = 
xbal,1)

ID – point 2
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• How to find s2 (stress in compressed 
reinforcement) ?

ID – point 2
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• Pure bending

ID – point 3
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We have two unknowns: height of compressed part 
of concrete cross section (x) and stress in 

compressed reinforcement (s2)



• To find the value of s2, we can derive 
quadratic equation:

• By solving this equation, we will receive 2 roots

• Only one of them will „make sense“ – we will 
use that one to calculate x:
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• Whole cross-section is in tension (strain in 
compressed reinforcement is 0)

ID – point 4
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• Pure tension

ID – point 5
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• Always consider minimum eccentricity

• Minimum bending moment

• Restriction of ID – pure compression can never 
occur, minimum bending moment always has to 
be taken into account

ID – moment M0
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