COST Action IFER TU0904 Training School, Lulea, March 2014

Numerical analysis of a composite column subjected to fire

Ioan Both Raul Zaharia Leslaw Kwasniewski Dan Dubina

detailing

Analysis of elements subjected to fire

??? Output quantities ??? Method ???

fire resistance time

bearing capacity

Tabulated data

stresses

deformation

integrity

etc.

Simple calculation models

Advanced calculation

models

b. Hot-rolled

Case study / benchmark

Parabolic longitudinal path –

midspan imperfection L/1000

Dimensions		l/h/b	cm	400 / 30 / 30
		Us	mm	50
		e f	mm	19
		ew	mm	11
Buckling length		lo,fi	cm	200
Load		N E,fi,d,t	KN	-1700
Concrete C25/30 (3 % moisture (by mass))		<i>f</i> ck(20°C)	N/mm²	25
Reinforcing steel S 500		<i>fyk</i> (20°C)	N/mm²	500
Structural steel S 235		f_{ak} (20°C)	N/mm²	235
Stress – strain curve		Concrete a.		DIN EN 1994-1-2
		Reinforcing s	steel b.	
		Structural ste	eel	
Temperature load		ETK (four sid	ETK (four sides)	
Heat transfer coefficient		α	W/(m² × K)	25
Emissivity		Em		0.7
Thermal and physical material properties	Concrete	$\lambda, \rho, c_{\rho, \varepsilon}$ th,c		DIN EN 1994-1-2
	Steel	λ , ρ s, <i>C</i> a, <i>E</i> th,s, <i>E</i> th,a		DIN EN 1994-1-2
a. Containing mainly	quartzite aggre	gate and density o	=2400 kg/m³	

Training School, March 2014, Lulea

Material properties Steel

Training School, March 2014, Lulea

Material properties Steel

Training School, March 2014, Lulea

Material properties Concrete

Training School, March 2014, Lulea

Analysis

Coupled thermal-displacement analysis

Results

The results do not fulfill 2 criterion (from DIN 1991-1-2): fire resistance time and displacement for 60min.

Conclusions

- The analysis of elements subjected to fire should start with simple models
- Minor disparities may appear even for simple models
- Complex input data may lead to large disparities of results
 - New questions about behaviour and mechanical interaction between elements arise
 - Debonding
 - Concrete damage
 - Radiation

References

1. DIN EN 1991-1-2/NA (2010) National Annex - National determined parameter – Eurocode 1: Actions on structures – Part 1-2: General actions – Actions on structures exposed to fire, Deutsche Norm

 Raul Zaharia, Thomas Gernay, Validation of the Advanced Calculation Model SAFIR Through DINEN 1991-1-2 Procedure, 10th International Conference on Advances in Steel Concrete Composite and Hybrid Structures Singapore, 2 – 4July 2012

3. Leslaw Kwasniewski, Application of grid convergence index in FE computation, Bulletin Of The Polish Academy Of Sciences, Technical Sciences, Vol. 61, No. 1, 2013

4. Abaqus' Theory Manual

THANK YOU !

Ioan Both, Dr.eng ioan.both@upt.ro

"Politehnica" University of Timisoara

